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C O N S T R U C T I O N  O F  P I E C E W I S E - A N A L Y T I C A L  G A S  F L O W S  J O I N E D  T H R O U G H  

S H O C K  W A V E S  N E A R  T H E  A X I S  O R  C E N T E R  O F  S Y M M E T R Y  

A. L. Kazakov UDC 533.6 

Analytical solutions of a quasilinear system of equations with partial derivatives are constructed 
in the case where the initial data for different functions are specified on different surfaces and 
the resultant problem has singularities of the form u/x  and w/z .  Conditions for existence 
and uniqueness of a solution in the form of formal power series for the problem posed and 
su~icient conditions for convergence of the series are indicated. A generalization of the problem 
considered is given. Results of the study are used to solve the problem of the focussing of a 
compression wave generated by a piston moving smoothly in a quiescent gas: a solution for 
t = O, including determination of the piston trajectory, and a solution for t < O, including 
unequivocal construction of the front of a reflected shock wave, are uniquely constructed from the 
distribution of gas-dynamic quantities for t > O. The solution of this problem is a generalization 
to the case of two independent variable self-similar Sedov's solutions. 

I n t r o d u c t i o n .  In a class of self-similar flows tha t  depend on one independent  variable A = r/t, 
solutions are known tha t  describe the focusing of a compression wave generated by a piston moving smoothly 
by a specified law in a homogeneous quiescent gas [1-3]. After focussing of a weak discontinuity, a reflected 
shock wave (SW), behind which the compressed gas is at rest, propagates at a finite constant speed from the 
center or axis of symmetry.  Using the characteristic Cauchy problem [4], for the non-self-similar problem of 
a piston moving smoothly in a gas from a point r = r0, Bautin [5] obtained a local solution in a vicinity of 
the point (t = to, r = r0) for r0 > 0 [5]. In a class of self-similar flows dependent  on one variable ~ = t/r k 
(1 < k < 2), Godunov and Kireeva [6] and Zababakhin and Zababakhin [71 constructed flows with shock 
waves reflected from the point  r = 0 [6, 7], whose speed is variable and is equal to infinity at the moment  
t = 0. Teshukov [8, 9] proved the  existence and uniqueness of piecewise-analytical solutions for the problem 
of the reflection of a spatial SW from a curvilinear wall and for the problem of the interaction of curvilinear 
SW fronts. For cylindrically and spherically symmetric flows, Bautin and Kazakov [10] constructed a solution 
of the problem of the reflection of a SW from the axis or center of symmetry.  In this case, the SW moves at 
a finite speed, but  the question of joining of the flows behind and ahead of the SW remains to be solved. 

In studies of gas flows with reflected shock waves, it is necessary to solve generalized Cauchy problems 
[11-13], including those for systems with a singularity [14]. 

1. G e n e r a l i z e d  C a u c h y  P r o b l e m .  We consider a generalized Cauchy problem of the form 

wz = [r(x ,y ,u ,v ,w)  U+ s(x ,y ,u ,v ,w)  W+t (x , y ,u , v ,w)]  I (1.1) 
X X y = 0  ' 

ux = a(x ,y ,u ,v ,w)uy + b(x,y,u,v,w)vz + U f ( x , y , u , v ,w )  + e(x ,y ,u ,v ,w)wz + p(x,y ,u ,v ,w) ,  
X 

U 
v~ = c(x ,y ,u ,v ,w)uy + d(x,y ,u ,v ,w)vx + xg(X,y ,u,  v,w) + h(x,y,u,v,w)w= + q(x,y,u, v,w), 
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w(:)l,=o = 0 ,  "(x,y)l::o = 0 ,  ,,(x,y)t,:o = o. 
Here u, v, and w are unknown functions and x and y are independent  variables. For brevity, the generalized 
Cauchy problem is called problem A below. 

T h e o r e m  1.1. Let, in problem (1.1), the functions a, b, c, d, e, f ,  g, h, p, q, r, s, and t be analytical 
in a vicinity of the point O (x = 0, y = 0, u = 0, v = 0, w = 0). We introduce the constants 

Ao = a(O), t3o = b(O), Co = c(O), Do = d(O), 

f 0 = f ( O ) ,  g 0 = g ( O ) ,  Eo = e(O), Ho = h(O), ro = r(O), s 0 = 8 ( O ) ,  

A.  = ~nA~ = ~nB~ Aogo Bogo 
n fo' B.  G . = C o + ~ ,  D . = D o + ~  (1.2) 

- -  n--  fo' n - -  fo n - -  fo' 

, (g Horon~ Ao 
C• = Co + O + n _  so/ ( n _  fo _ roEon/(n_ so)). 

The numerical sequences ~r=, An, and A* are given by the formulas 

60 = 0, A0 = 1, A~ = 1, 8,+1 = 1 + A,,+iD,=+IBnS,/(B,=+iA,,), 

A , + l  = 1 - C,+2Bn+16n+I,  A~+ 1 = 1 - C,*+2Bn+ldTn+l for B0 ~ 0, n E N, (1.3) 

A , = I ,  A * = I ,  $ n = 1  for B 0 = 0 ,  h E N .  

/f  the conditions 
r0Eok 

f o C n ,  s o ~ n ,  f0+k_s-------~#0, A*~0, A,=#0, n, k E g ;  (1.4) 

lim 6.  = 6oo, 16001 < +co,  lim An = Aoo r 0, IAool < + ~ ;  (1.5) 
$t..,-.*OO n"-'*OO 

IAoDolIA~ < 1, (1.6) 

are satisfied, problem (1.1) has a unique locally analytical solution. 
R e m a r k .  If conditions (1.4) and (1.5) are satisfied, the  equalities lim Cn = lira C,~ = Co and 

l l l - - tOO Iri.--*OO 

IL m A*,, = lim A ,  = Aoo a r e  valid. 
l l - ' -*Oo 

P r o o f .  Before construct ing a solution of problem (1.1) in the  form of formal power series and then 
proving their convergence, in problem (1.1) we change the variables: = ~ = elx,  y~ = 62y, and el ,  ez = const > 0. 
In the new problem A ob ta ined  as a result of this change, values of the  constants A•, (A~)',  6~, A ~ ,  and d7~ 
coincide with values of the  corresponding constants (1.2) of problem (1.1). However, because of the special 
choice of ~1 and e2, the  following inequalities hold: 

la'(O)l- le2a(O)/~ll < IAool, Id'(O)l- kld(O)/e21 < IAool. 
In what follows, it is assumed tha t  the  corresponding change has been made. In the  new problem, the primes 
are omitted to simplify the  notat ion,  i.e., the notation of (1.i) is used for the new problem. Then,  the  following 
inequalities hold: 

IA01 < Ih= l ,  IDol < IAool. (1.7) 

We construct a solution of problem (1.1) in the form of series (the quanti ty z takes values u and v) 

(~k +l z 

=(~'Y) = ~ =k:xkYt/(k!l!)' ~'~ = ~ : = , = o '  
k,t~Jvo (1.s) 

wk = dx k I==0" ~(=) = ~ w.x"lr,!, 
n~ No 

We introduce the following designations: 

t* = [(,- - ,-0)u + (s - ~0)w + xt] , 
y = 0  
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p* = [(a - Ao)% + (b - Bo)v~]x + ( f  - fo)u + e(ru + sw + xt) - Eo(rou + sow) + x p ~  
y=O y=O 

q* = [(c - Co)uy + (d - Do)vz]x + (g - go)u + h(ru + sw + - Ho(rou +  oo,I + xq. 
y=O y=O 

We multiply both sides of the equations of system (1.1) by x. In the designations introduced above, the system 
takes the form 

zw~ = (r0u + sow + t*) y=o' 

zuz  = x(Aouy + Bovz) + ufo + E0(r0u + sow)l + p*, (1.9) 
y----0 

zvy = x(Couy + Dovx) + ugo + Ho(rou + s0w)l + q*. 
y=0 

The superscript asterisk at t*, p*, and q* in problem (1.9) is omitted for convenience. We study the problem 

zwz  = (rou + sow + t)] xu~ = x(mou, + Bovx) + ufo + Eo(rou + + ~ 
y =  0 ' y=O 

We set 

I 
xvy = x(Cou~ + Dov=) + ugo + Ho(rou + sow)l + q, 

! y--O 

c3k +i r 
rk, i - - ~ _ k ' Z ' l l  ==~=0 , t .  = 

OX Oy lu=v=~=O 

w(o)=o, u(o,y)=o, 
(I.I0) 

O'*tly=o 
OX n [z----u=v=w=O' 

zn = (Zn,O, Zn- l , l , . . . , zo ,n) ,  rn = (rn ,o , rn- l , l , . . . , ro ,n)-  

The quantity r takes values p and q. Components of the vectors (zm, w,n) for 0 ~< m ~< l + k = n enter in 
rk+l,t, t .+l ,  and components of the vectors (zm, Wm) for m > l + k = n do not enter in them. 

The possibility of unique determination of the coefficients of series (1.8) is proved by induction with 
respect to n = k + I. By virtue of the initial conditions, 

uo,! = vk,o = wo = 0 for all k , l  E No (1.11) 

and, in particular, wo = uo,o = vo,o = 0. Hence, zo and wo are uniquely determined by the initial conditions. 
Let all z o , w o , . . . , z , , , w , ,  (n > /0)  be found. To calculate zn+: and w,,+l, we differentiate Eqs. (1.10) k + 1 
times with respect to z and n - k times with respect to y (setting x = y = u = v = w = 0) and take into 
account the initial conditions (1.I1) and the fact that w does not depend on y. As a result, we obtain the 
relations 

(n + 1)wn+l = rou,,+l,o + sown+: + t,,, uo,n+: = O, 

Ul,n = Aouo,n+l + BovL .  + foul , .  -F Pl,.,  vo,n+l = Couo,n+l + Dovl, .  + goUl,n + ql,n, 

, ~ 1 7 6  

(k -F 1)Uk+l,n-k = (k -b 1)Aouk,n-k+l + (k + 1)B0vk+l,.-k + fOUk+l,n-k "1- Pk+l,n-k, 

(k + 1)Vk,~+l-k = (k + 1)C0uk,.+l-k + (k + 1)D0vk+l,n-k + gouk+l,,,-~ + qk+l,~-k, 

. ~  

nun,1 = nAoUn-l,2 + nBovn,1 + fOUn,1 -b Pn,1, 

nVn--l,2 = nCoun-l,2 "Jr nDovn,1 + goun,1 + qn,1, 

(n + 1)u~+1,0 = (n + 1)Aoun,1 + (n + 1)Boy.+l,0 + fou.+l,0 + Eorou~+l,0 + Eosow.+l + p.+l,0, 

(n + 1)v~,1 = (n + 1)Cou~,l + (n + 1)Dov.+l,0 + gou.+l,0 + Horou.+l,0 + Hosow.+l + q.+l,0, 

Vn+l,0 = 0, 

(1.12) 
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which are a system of linear algebraic equations for u . + l ,  v . + l ,  and w.+l .  
System (1.12) is solved by the method of successive elimination of unknowns. 
The "direct process" consists of constructing the quantities 

A o = l ,  c51 = 1 ,  A1 = 1 - C 2 B 1 6 1 ,  A ~ = l - C ~ B 1 6 1 ,  

6k+1 = 1 + Ak+lDk+l -~k for Bo # 0 or 6k+ 1 = 1 for Bo = 0, 
Dk+l 

Ak+l = 1 -- CIr A~+ 1 = 1 - C~+2B~+I6k+l, k = 2 , . . . , n ,  

~l,n --" Qo,n/Ao,  XI,n "- eo ,n ,  ~2,n--I  = (C2XI ,n  + Q I , n - 1 ) / A 1 ,  

Xk+L.-t  = Ak+l(Bk6i~bk+L.-i + Xt,,~-k+l) + Pk , . - t ,  

~ k + l , . - k  = (Ck+lXk, .+ l -k  + Q k , . - k ) / A k ,  k = 1 , . . . , n ,  

~b*+l * �9 , �9 �9 �9 = ( c~+~x . ,~  + Q.)// ' , . ,  * A.+l(B.6,t~b.+l + X.,l) + P~. Xn+l = 

�9 gOPk+l ,n -k  Here Pt+l ,n-k Qk,n-k = qt+l,n-k + 
Pk,, ,-t  = k +  1 - f o '  k + l  ( k +  1 ) (k+  1 - f o ) '  

P.+Lo + Eosot.+l/(n + 1 - so) 
P~ = n + 1 - fo - roEo(n + 1)/(n + 1 - so)'  

1 [q,t+Lo + Hoaot.+l ] 1 noro(n  + 1)] pn+x,o + Eosotn+l/(n + 1 - so) 
q; = .  +----7 7,u / :7o  + a~ 

The "reverse process" is On+l,0 "- 0, t~n,1 = ~bn+l, Un+l,0 "- X n + l ,  

D .  
v"-L2 = A._~ v.,~ + ~b.,~, u.,~ = B.6.v.,~ + X.,~, 

~  

D1 
vo,.+l = ~ vL. + ~ba,., uL. = B~if~v~,. + Xa,.. 

Before proving the  convergence of series (1.8), we transform the recursive formulas for X~+L--~ to 
explicit expressions in terms of Ai, Bi, Ai, A*, 8i, Pk,l, and Qt,I: 

x l , .  = eo, . ,  ~n,.-~ = (C2eo,.  + Q~,._~)/A~, 

X k + l , n - k = { ~ [ ( ~ :  Aj+I~P," " n ' "  i ] P k , n - k } + { ~ [ ( ~ t ~ )  k = 0 , . . . , n -  1, 

* ra* / n - 1  Ai+I ~ , | '-'.+I ( ]7" A*+1 { r cS' . .  

i=1 j=i i=1 L A .  \ j=i A* 

We now express t~k,n_k+ 1 in terms of ~i,n--i: 

* AD" 1 ~b 'On,1 = ~ n + l ,  Vn--l,2 = *+1 + ~bn,1, 

. . ,  

i= /+1  j 1 zAJ--1 / J J 

The convergence of series (1.8) is proved by the method of majorants.  
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From conditions (1.5) and (1.7) it follows that  there are constants Ma and q. such that  for all k, l E N0 

M1 /> 1, 0 < q. < 1, kiln iA,+al ~< Mlq~,, 
i=n IA, I 

nrI I~ [oi+l[ <~ Mlqk,, Ir.I < M1, 1 
i=, [Ai-'--"~ [Ak---'~l <<" MI, 

we have 

lAb'+l[ ~< M1, 
IA~,I 

1 

ICX+at [Cn+l_____~l ~< M1, IAkl ~< Ma, ~< M1 IA~I ~< Ma..  
IZX.I I/X;I ' 

As a consequence, with an appropriate  choice of M2 and M3, and for p > 0, the Cauchy problem 

M2 
z ;  = [1 - (~ + 2 z *  + w * ) / p ]  [(~ + 2z*  + w*)(2z; + w;) + 1], z* (o )  = o, 

M3 (1.13) 
w; = [1 - (~ + 2 z *  + w * ) / p ]  [(~ + 2z" + w * ) ( 2 z ;  + Wr) + 1], W ' ( 0 )  = 0 

majors the solution of problem (1.1). Here U* majors u, v (U* >> u,v) ,  W* >> w, W* >> z, and r -- x + y. 
Writing the differential system of problem (1.13) in normal form, we find that  the right sides of this 

system are analytical functions that  major zero, and, hence, for problem (1.13), the Cauchy-Kowalewski 
theorem is valid. Therefore, problem (1.13) has an analytical solution that  majors series (1.8). The proof of 
Theorem 1.1 is complete.  

Let us formulate and prove the sufficiency of some conditions for the validity of Theorem 1.1, and 
generalizations of this theorem tha t  will be used below in a solution of a particular gas-dynamic problem. 

T h e o r e m  1.2. Let, for problem (1.1), the following conditions be satisfied: 
(1) the functions a, b, c, d, e, f ,  g, h, p, q, r, s, and t are analytical in a vicinity of the point O; 
(2) fo ~ n, so ~k n, fo + r o E o k / ( k -  so) r n, n, k �9 N,  

( 1 - C . ) ( 1 - B . ) > A . D n > - B . ( 1 - C n ) ,  1 - B , > 0 ,  1 - C ~ > / 0 ,  

Co ~ 1, ~/~ > 4a0, (B0 + a0 - b0) 2 > [a0l.  (1.14) 

Then problem (I.1) has a unique analytical solution. Here ao = AoDo, bo = BoCo, and "y0 = 1 + ao - b0. 
R e m a r k .  The  condition C*+1 ~< 1 ensures satisfaction of the inequality Am ~ 0. The following 

generalization of this condition is valid: Am r 0, n = 1 , . . .  ,no; C* <~ 1, n = no,no + 1 , . . .  (the validity of the 
generalization follows from Lemma 1.4, which is formulated below). 

Before proving Theorem 1.2, we formulate some auxiliary statements.  
We consider a pair of sequences am and/34 (n E N) calculated by the rule 

a l  = 1, /~a = B1, a . + l  = am - C.+a/~. ,  

/3n+1 = An+lDn+ll3n + Bn+lOtn+l = B.+aan  + (A.+IDn+I - Bn+lCn+l)13n. 

L e m m a  1.1. I f / X . r  n E N ,  t h e n a n + l =  I I A k ,  n = l ,  2, . . . .  
t:=1 

L e m m a  1.2. Let (1 - C n ) ( 1  --B,~) > A n D .  > - B n ( 1  - G n ) ,  1 > Bn > O, n E N.  Then, a .  > J3n > O, 
h E N .  

n--1 
L e m m a  1.3. I f  An 5~ O, A~ ~ O, n E N,  then an+l* = A~ 1-I Ak,  n = 1 , 2 , . . .  , where a~+ 1 = 

k=l 

L e m m a  1.4. f f  a ,  > fin > O, C~ <~ 1, n E N,  then a* n+l  > 0. 
L e m m a  1.5. f f  the sequence An converges, 4a0 ~< 7 2. Conversely, i f  4ao < 720, ao ~ O, and An ~ 0 

(n E N), the sequence An converges. 
The proofs of the lemmas are not given here. 
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P r o o f  of Theorem 1.2. From the conditions of the theorem and Lemmas 1.1-1.4 it follows that 
conditions (1.3) and (1.4) are satisfied. In addition, according to Lemma 1.5, condition (1.5) is satisfied. 
We now prove that  A~o > la01. We use Lemma 1.2: 

I~+11  - la= - C~+1~=1 > (1 - IC=+~l)l~=l = (1 - IC=+~I)IB=~=-~ 
n 

+ ( A = D =  - B=C=)~=-x l  > . . .  > IB~l(1 - I C = + ~ l )  1-[ (IBk + A k D k  - B~Ckl).  
Hence, t=2 

n n 

1"I Ak > BI(1 - C,+1) I"I (Bi, + A tDk  - B t C t )  > O. 
k = l  k = 2  

Since the last inequality is valid for any n E N, we have Aoo /> IB01 + IAoD0 - CoBol. Hence, A ~  > [a0[. 
Thus, all conditions of Theorem 1.1 are satisfied, and, hence, the statement of Theorem 1.2 is also valid. 

In Theorem 1.2, we have formulated sufficient conditions of analytical solvability, which will be checked 
below in a solution of problems of gas dynamics. We now formulate a generalization of this theorem that will 
be directly used to solve a gas-dynamic problem. 

T h e o r e m  1.3. The problem 

z w ~  = (rou + sow  + zt)l~=0, 

= x(Aouy + Bovz) + ufo + go(rou + sow)[ �9 t t  z + x p ,  
I y=o 

= x(Couy + Dovx) + ugo + Ho(rou + sow)[ + Xl )  y xq, (1.15) 
I y----0 

w(o)  = o, ,~(o, v) = o, v ( z , o )  = o, z ( : , o )  = o 

has a unique locally analytical solution, i f  the following conditions are satisfied: 
(1) the functions t, p, q, and r depend on the independent variables x and V, the unknown functions 

u, v, w, and z, and their first derivatives; 
(2) the functions t, p, q, and r are linear in the derivatives wz, u, ,  v , ,  zx, u~, vy, and zy, and the 

coef~cients of  these derivatives vanish at the point O (x = 0, V = 0, u = 0, v = 0, w = 0, z = 0); 
(3) the functions t, p, q, and r are analytical in a vicinity of the point 0 with respect to the corresponding 

variables; 
(4) for the constants Ao, 13o, Co, Do, go, fo, Eo, 11o, to, and so, conditions (1.14) are satisfied. 
Problem (1.15) differs from problem (1.10) only by the presence of an equation for z that  does not 

contain a singularity. Therefore, the proof of Theorem 1.3 is generally similar to the proof of Theorem 1.2 
and is not given here. 

2. G a s - D y n a m i c  P r o b l e m .  We consider the system of gas-dynamic equations [15, 16] for an ideal 
polytropic gas with the equation of state p = A2(S)p't/% where p is the pressure, S is the entropy [below, 
s denotes the function A(S)], p is the density, and 3' = const > 1 is the polytropic exponent of the gas. We 
study cylindrically (v = 1) or spherically (t, = 2) symmetric flows that depend on time t and the distance 
r = (z~+ "'" - " x2 v+lJ ~I/2 (zl ,  x2, and zs axe spatial coordinates). As the sought functions U = U(t ,  r) we take 
U = (o', u, s), where o" = p('r-1)/2 and u is the speed of the gas. Then the speed of sound in the gas is defined 
by the relation c =crs ,  and the system of gas-dynamics equations has the form 

~t + Uar + ~ u~ + g =0 ,  

(2.1) 2 2 
ut + 7 - i ~rs2~r" + uu~ + -7 ~ = O, st + us~ = O. 

676 



We seek a piecewise-analytical solution of system (2.1) for the problem of smooth motion of a piston in the 
gas that generates a focused compression wave. For this problem, the flow configuration in the plane of the 
variables t and r is given in Fig. 1. 

At the moment t = to and at 0 <~ r ~ r0, the homogeneous gas is at rest. From the point A (t = to, 
r = r0), an impenetrable piston begins to move smoothly in the gas (the curve AB is the trajectory of motion 
of the piston). A sonic characteristic (the straight line AO), separating the compression-wave region fll from 
the region of rest f~0 and having constant speed minus the speed of sound co in the gas region fl0, begins to 
propagate in the homogeneous gas, which is at rest in the region f/0. The moment of focussing of the sonic 
characteristic is taken as t = 0. For an analytical law of motion of the piston, in a vicinity of the point A in 
the region ill ,  there is a unique analytical solution of the piston problem [4, 5] that  describes isentropic flow. 
Outside this vicinity in the region fix, singularities of the gradient catastrophe type can arise. 

If the law of motion of the piston is chosen in a special manner,  the flow in the region ~1 is self-similar 
[1-3]: for the system of ordinary differential equations describing self-similar flows U = U(A), an integral 
curve that passes through appropriate singular points is constructed. Thus, in the region ill ,  a compression 
wave is chosen. The curves AO, AB, and OC (the trajectory of motion of a reflected shock wave) are uniquely 
constructed from the compression wave. For these self-similar flows, the curve OC is a straight line, and in 
the region f12 between the reflected shock wave and the axis r = 0, the compressed gas is homogeneous and 
is at rest again. In the region il l ,  the gas parameters are constant on the straight lines A = const, including 
o'(0, r) = const > 0 and u(0, r)  = const < 0. It is clear that  the self-similar flows U = U(A) cannot define 
profiles of the gas-dynamic parameters at the moment t = 0 in the more general case: 

r r) = ~0(r), u(0, r) = uo(r), s(0, r) = so = const. 

If one assumes that  for any a0(r) and uo(r) in the region fll at t >/0, system (2.1) has a solution, then the 
curve OC is no longer a straight line, and for the gas flow in the region f12, a,  u, and s are no longer constants. 

The goal of the present s tudy is as follows. First, using the initial conditions 

a(O,r) -- o0(r), cr0(O) > O, u(O,r) = uo(r), u0(O) < O, s(O,r) = so = const > 0 (2.2) 

it is necessary to construct a solution of system (2. I) in the region ~ll and to relate it to the problem of focussing 
of the compression wave. The solution of problem (2.1) and (2.2), depending on the initial data, can be related 
to the problem of focussing of the  rarefaction wave. However, a substantial gas-dynamic problem that  can be a 
"prehistory" of such a rarefaction wave has not been found. Then, in the region f12, it is necessary to construct 
another solution of system (2.1) for which u(t, 0) = 0. Simultaneously with construction of a solution in f12, 
it is necessary to determine the  unknown shock wave OC on which the  flow constructed in 1"/1 and the flow 
sought in f/2 are connected by the Hugoniot relations [15, 16]. Since the flow in the region fll is isentropic, 
without loss of generality, we assume that  so = 1, and, hence, a = c. 

The procedure of constructing a solution of problem (2.1) and (2.2) in the region 121 is described in 
detail in [10], and, therefore, we shall be brief in reasoning. 

In system (2.1), we introduce new variables: 

= t/r ,  X = r. (2.3) 

The Jacobian of the replacement is J = 1/r. Replacement (2.3) is degenerate for r = 0. 
T h e o r e m  2.1. I fUo(r )  are analytical functions in a vicinity o f  the point r = O, the Cauchy problem 

(2.1) and (2.2) written in the variables ( and X has a unique analytical solution in a vicinity of the point 
(r = 0,  x = 0):  

oo (k 
U(C,X) --- ~ Ukl(X) ~.w' U01(X) -- U0(X). (2.4) 

k=0 

Theorem 2.1 is a corollary of the Cauchy-Kowalewski theorem. 
Series (2.4) are defined irrespective of the signs of the components of the vector U0(X) in a certain 

complete vicinity of the point (~ = 0,X = 0). From the physical sense of problem (2.1) and (2.2), we must 
consider solutions for X t> 0 for which er >/0. 

Along the axis OX, the region of existence of the solution "reaches" the point X = X,, at which there 
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is a singularity of the functions U0(x) (it may be that  X, = +oo).  As X ~ X*, the radius of convergence of 
series (2.4) tends to zero as a certain positive power of the difference X - X, (or the fraction l /X ,  if X, = ~ ) -  

Along the axis O~', the  boundary points of the region of existence of an analytical solution are G < 0 and 
r > 0. In the case of focussing of the compression wave, the value of r = r (the straight line AO0 in Fig. 2) 
corresponds to the sonic characteristic AO in Fig. 1: c(~,, X) = const > 0, u(~,, X) = 0, and c(~,, X) = -1 /~ , .  
We note that  in the case of focussing of the rarefaction wave, the value of r = r corresponds to the free 
boundary (AO in Fig. 1): c(r X) = 0 and u(~,, X) = const = 1/~,. 

In both cases, the value of r = ~'* is larger than the value r = r r > r > 0, where 1/r is the speed 
of the reflected shock wave (the curve OC) in the case of self-similar flows. The value of r = 1~Do is uniquely 
determined from the equation 

• = 3 -___2.(6, o) + +'I)2 ,,2 ((i, o) +  2(6, o) 
r 4 16 

Transforming to dimensionless variables, it is easy to show that ,  without loss of generality, it is possible 
to assume that  one of the  values a0(0) or ]u0(0)] is equal to unity. Therefore, for given 7 and v, the value of 
# = a0(0)/[u0(0)[ determines which of the quantities (a or u) vanishes at the point (r = ~., X = 0), i.e., which 
of the waves (compression or rarefaction) is focused. From the results of Sedov [1, p. 215] it follows that the 
statement below is valid. 

L e m m a  2.1. For any  p > 0 there are va/ues of T~ and -y~ such that 
in the case ofcyl indrieal  symmetry, i l l  < "r < 7~, then u(~.,O) = 0 and o'(~.,0) > 0, i.e., the 

compression wave is focused, and if 7[ < 7 then u(~., O) < 0 and c(~., O) = O, i.e., the rarefaction wave is 
focused; 

in the case o f  spherical symmetry, f f  1 < 7 < 7~, then u(~,,0) = 0 and tr(~,,0) > 0 , i.e., the 
compression wave is focused, and i f  7~ < 7, then tt(~,,0) < 0 and ~r((.,0) = O, i.e., the rarefaction wave is 
focused. 

Numerical values of 7[ and 7~ are given below: 

p 0.I 0.25 0.5 I 2 4 10 

7 i ' ( v = l )  1 .13 1.30 1 .59 2.120 3.19 5.30 11.62 

7~ (v = 2) 1 .10  1.24 1 .45  1.835 2.65 4.25 9.04 

Knowing the gas flow in the region f~l as series (2.4), one can uniquely determine the trajectories of 
gas particle motion in the region f~l by solving the appropriate Cauchy problems for ordinary differential 
equations. One of the particle trajectories constructed can be assumed to be the trajectory of motion of the 
impenetrable piston generating a wave compression in the region ill. 
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If u0(r) = const < 0 and tr0(r) = const > 0, series (2.4) break at the first term, and the gas flow 
in the region ~1 is described by the self-similar Sedov solution. The  differential equation for the particle 
trajectory in this case is integrated in quadratures. The  particle trajectory tha t  passes through the point 
(~ = 0, X = X0 = 1) is plot ted in the plane of the variables ~ and X in Fig. 3. In Fig. 4, the same trajectory 
is constructed in the  plane of the  variables t and r. In this case, the reflected shock wave (the straight lines 
OIC and OC) moves at a constant  speed, the gas in the regions ~0 and ~2 is homogeneous and is at rest, 
and orl~ o < ' la2- 

If u0(r) and a0(r) are not constant,  the coefficients of series (2.4) are different from zero for n > 0, 
and, hence, the flow in the region fll is not self-similar, and the reflected SW has a variable speed of motion. 

Figures 5 and 6 show gas-particle trajectories in the  region ftl that  pass through the point r = 0, 
X = X0, i.e., the point  t = 0, r = r0 = X0 for the particular distribution of gas-dynamic parameters (curves 2), 
trajectories of particle motion in self-similar Sedov flow (curves 1), and trajectories of the  reflected shock wave 
in the self-similar and non-self-similar cases (curves O1C1 and OaC2). The dashed curves in Fig. 5 illustrate 
the qualitative behavior of the region of convergence of series (2.4). 

Let us proceed to constructing a solution of problem (2.1), (2.2) in the region ~2 and the law of motion 
of the reflected SW. 

In system (2.1), we change both independent and dependent  variables. Initially, using the formulas 

= ~ ( x ) ,  t = y + x ,  (2.5) 

we replace r and t by the independent  variables x and y. The  Jacobian of mapping is J = ~v'(x). Here the 
function r = ~(t) is as yet unknown and defines the trajectory of motion of the reflected SW. However, from 
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the previous reasoning, we know the values of qa(0) = 0 and ~J(0) = D(0) = 1/~,. Hence, replacement (2.5) at 
the point (t = 0, r = 0) is nondegenerate, and, provided that the function ~(x) is analytical, the replacement 
is also nondegenerate in a vicinity of the coordinate origin. In replacement (2.5), the axis r = 0 becomes the 
axis x = 0, and the SW line becomes the other coordinate axis y = 0. 

The solution in the region lq2 is denoted by U, and the solution in the region i'll by U 1 = (u 1 , c I ). Let 
us rewrite the Hugoniot conditions [16] on the shock wave (i.e., on the axis y = 0) in equivalent form for D, 
a, and s in terms of U 1 and u (this is possible by virtue of the "determinancy theorem" [16]): 

y=O 4 ~ u + 1----~ y=O 

(r]'=~ = L ( l 1 4 ) ( 7 - 3 ) ( u - u ' ) + ~ / ( ( 7 + 1 ) 2 1 1 6 ) ( u  u')2 + (c ')  2 ,=o' 

sly=o = (7 - 3)(u - u') + - + (cl) 2 

x (37 - 1)(~ - u ' )  + v N (~, _ ~ , )2  + (c,)2 ~=0" 
Recall that c = as.  

On the axis or at the center of symmetry we have the condition ulz=0, = 0. Therefore, the quantities 

aoo = alz=,=O_ and s00 = slz=y=o are uniquely determined from conditions (2.6), since ul[r162 ~ are known 

from the preceding reasoning. Thus, coo = s00a00 > 0. 
We introduce the following designations: 

2 2 Do 
l = - -  sooo" + - aoos, Mo = - -  

7 - 1 7 aoo soo" 
We note that under the ZemplSn theorem [15], 0 < M0 < 1. 

The functions u I and c 1 are determined along the unknown shock-wave front. Therefore, 

u l { , = o  "-- V (~ ' ,X) ly :O  = U 1 .-- U1 1 
~,=o r  ~r  ' 

where r  is determined from the relation ~o(x) = xr  We designate the right parts of the Hugoniot 

conditions (2.6) by D*[y=0 , o'*{y=0, and a*]~=0, respectively. By virtue of the aforesaid, we can write these 

functions as 

D*ly=0 = a u  + e r  + q0, a*l~=0 = ~ , u  + e1r  + ql, s*ly_-0 = a2u  + e2r  + q2. 

Here (oq,/O,,)[==,= ~  = (cOqi/Or = 0, i =  0,1,2. 

The expressions for a ,  a l ,  a2, e, el,  and e2 are rather cumbersome. Some of them, necessary in what 

z = s - - s * [  (2.7) 
y=O ' 

follows, will be given below. 
We introduce new unknown functions by the formulas 

1 
u ' = u ,  v = - j s + i ( l - f l u - e o r  w = r  

i.e., instead of u, a, s, and r  we seek u I, v, w, and z. Here 

2 2 2 2 2 2 
-~-- - - S O 0 ~  1 2t- --0"00~2; eO - -  ,~OOgl + --CrO0~2; q3 = Sooql + --Crooq2. 

7 - 1  7 7 - 1  7 7 - 1  7 
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Replacement (2.7) makes it possible to proceed to the Cauchy problem with zero initial conditions on different 
surfaces for a quasilinear system with singularities. 

i , and w~ (for convenience, tile Solving the system resulting from replacements (2.5) and (2.7) for u~, vu, 
prime is omitted below) we obtain 

w x =  a - + ( e -  1 ) - +  
.T X y=O ~ 

1 - Mo Mo(1 + / 3 )  v u M0eo 
uz = 1 + / 3 M 0  uv + 1 + / 3 M 0  vz 1 + / 3 M 0  x 1 + / 3 M 0  wz + Y2, (2.8) 

Mo(3 - 1) 1 
v y =  l + / 3 M 0  u~ + l + /3Mo VZ + 

V/3 U eO 

(1 +/3M0)(1 +/3) x - (1 +/3M0)(1 +/3) w, + Y3, 

Zy ~ 74 .  

Here I~ (i = I , . . .  ,4) are specified functions for which conditions (1)-(3) of Theorem 1.3 are satisfied. The 
expressions for these functions are cumbersome and are not given here. 

The condition on the symmetry  axis for the gas speed u = 0 and the Hugoniot conditions on the SW 
in the new variables are written as 

w ( 0 ) = 0 ,  u ( 0 , y ) = 0 ,  v(x,O)=O, z ( z , 0 ) = 0 .  (2.9) 

Thus for system (2.8), we obtain a Cauchy problem with initial data (2.9) on different surfaces: the initial 
values for the unknowns w(x) and u(x, y) are specified on the coordinate axis x = 0, and for the other two 
functions v(x, y) and z(x, y), they are specified on the other coordinate axis y = 0. Recall that in the space 
of the physical variables t and r, the straight line r = 0 corresponds to the line x = 0, the initial conditions 
on this straight line correspond to the equalities D(t)lt=0 = 1/(1 and ulr=0 = 0, and the trajectory of the 
unknown SW corresponds to the line y = 0. Thus, two of the three Hugoniot conditions on the SW become 
the initial data for v(x, y) and z(x, y) specified on the straight line y = 0, and the third Hugoniot condition 
becomes the first equation of system (2.8). Problem (2.8) and (2.9) describes flows in the region Q2 that 
exactly satisfy the Hugoniot conditions. 

T h e o r e m  2.2. Problem (2.8), (2.9) has a unique analytical solution for 7 >. 3'0, where 

7 o = 1 , 1 1 7 7 4 9 . . .  [ o r v = 2 ,  q o = 1 , 0 5 1 8 5 4 . . .  [ o r v = l .  (2.10) 

For 7 /> 7o, problem (2.1), (2.2) has a unique analytical solution in the region 122 that also determines the 
trajectory of the reflected SW on which the Hugoniot conditions are satisfied. For the solution in f~2, the 
symmetry condition is also satisfied. 

Theorem 2.2 is proved by means of Theorem 1.3. We verify that  the conditions of this theorem are 
satisfied for problem (2.8), (2.9). 

Conditions (1)-(3) of Theorem 1.3 are satisfied because the functions D*, a*, and s* are analytical in 
a vicinity of the point (x = 0,y = 0,u = 0, v = 0,w = 0,z = 0). We verify satisfaction of conditions (1.14). 

1 

1+/3Mo' 
eo 

(2.11) 

We write the following necessary constants: 

A0 = 1 - M 2 B0 = /140(1 +/3) Co - M0(/3 - 1) Do = 
1 + / 3 M 0 '  1 + / 3 M o  ' 1 + / 3 M 0  ' 

v/3 v Moeo 
g o =  ( 1 + / 3 M o ) ( 1 + / 3 ) '  f o =  l + / 3 M o '  Eo= 1+/3Mo' Ho= 

rO = ~ ,  SO = ~ - -  1. 

(1 +/3)(1 +/3M0) '  

Conditions (1.14), except for the inequality 1/> C*+1 , were verified in [10]. 
The proof of the validity of the inequality 1 ) C* i.e., the estimation of the terms of the sequence n + l ,  
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C* (n E N) taking into account (2.11) n + l  

M 0 ( 3 -  1) 1 -  M 2 (v3 can ) 1 
C~ = 1 + 13Mo + (1 + [?Mo)(3 + i) n -t:T:- ~,/n(1 +/3Mo) + v + Moean/(n + 1 - ~) 

(e~ = ae0), is rather labor-consuming and is given here only briefly. 
We write explicit formulas for the constants e0, 3, a, e, and M0 using the solution in the region 9ll 

and the Hugoniot conditions (2.6): 

v S - (3' - 1)/2 
e0 = - ~  (S - (7 + 1)/4)[(6 - 1)(6 + (7 - 1)[2)] 1/2 < 0, 

( 6 - 1  ) , /2 6 
/3= 6 + ( 7 - 1 ) / 2  6 - ( 7 + 1 ) / 4 '  

('7 + 1) 6 v (6 - ('7 + 1)/2) 
a = ~ (6 - (~, + 1)[4) > 0, z = - ~  (6 -- (-y + I)/4) < 0, (2.12) 

Mo-- 6 + ( 7 - 1 ) / 2  ' 6 = ~ 7 + 1  +--u_lu, (7~+161)2(u-u') 2 + ( c ' )  2. 

Using relations (2.12), is possible to prove the validity of the inequality C*+1 ~< 1 if -)' satisfies (2.10). 
Thus, Theorem 2.2 is proved. Problem (2.8), (2.9) has a unique analytical solution if V >/3'o, where 70 

is determined from (2.10). 
It can be suggested that problem (2.8), (2.9) has a unique analytical solution if 1 < "~ < "to for any 

analytical functions uo(x) and a0(x). However, a new theorem which is different from Theorem 1.3 is required 
to prove this. 

The author is grateful to S. P. Bautin for useful discussions. 
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